

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Contributor guidelines

Contributing code to this project is intended to be light weight and intuitive to users familiar with GitHub to actively encourage contributions, but a process is documented and should be followed to prevent chaos, confusion and despair.

The mechanics of contributing code

Firstly, in order to contribute code to this project, a contributor must have a valid and current GitHub account [https://help.github.com/articles/set-up-git] available to use. Given an account,

	The potential contributor forks this project into his/her account following the traditional forking [https://help.github.com/articles/fork-a-repo] model native to GitHub

	After forking, the contributor clones their repository [https://help.github.com/articles/create-a-repo] locally on their machine

	Code is developed and checked into the contributor’s repository. These commits are eventually pushed upstream to their GitHub repository

	The contributor then issues a pull-request [https://help.github.com/articles/using-pull-requests] against the master branch of this repository.

At this point, the repository maintainers will be notified by GitHub that a ‘pull request’ exists pending against their repository. A code review should be completed within a few days, depending on the scope of submitted code, and the code will either be accepted, rejected or commented on for extra feedback.

Code submission guidelines

We want to ensure that the project code base maintains a level of quality over time, such that future contributors find it as easy to jump into the code as hopefully it is today. As such, pull requests should

	Remember that all of the code in this project is licensed under the 3-Clause BSD [http://choosealicense.com/licenses/bsd-3-clause/]. If you are not already familiar, please review the license before issuing a pull request. We intend this project to be open to external contributors, and encourage developers to contribute code back that they believe will provide value to the overall community. We will interpret an explicit ‘pull request’ back to this repository as an implicit acknowledgement from the contributor that they wish to share the code with the community under the terms of the BSD.

	Target the master branch in the repository

Pull requests will be reviewed by the set of collaborators that are assigned for the repository. Pull requests may be accepted, declined or a conversation may start on the pull request thread with feedback. If the pull request is trivial and all the submission guidelines defined above are honored, the pull request may be accepted without delay. If the pull request is good, but the guidelines defined above are not followed, the collaborators may leave feedback on the pull request and engage in a conversation with the contributor with what they can do to improve the pull request. At any time, collaborators may decline a pull request if they decide the contribution is not appropriate for the project, or the feedback from reviewers on a pull request is not being addressed in an appropriate amount of time.

Executing SDx Examples in the 2016.3 SDx GUI

All of the examples available in the SDx GitHub repository can be compiled by using either the provided Makefiles or the SDx GUI. Documentation on how to Makefile compilation is included in the README file of each example. This document outlines the steps to run an example application in the SDx GUI.

The steps described in this document use the hello example application as a reference. These steps apply to all example applications in the repository.

Configure the design to be compiled by the GUI

	Change directory into the example of choice. For these instructions, the hello example is used. It is assumed the example repository has been cloned into a directory called example

 cd example/getting_started/basic/hello

	Execute the following command

 make local-files

Create the Hello Application Example Project in the GUI

	Open the SDx GUI by running the following command in the terminal window

 sdx

	Create a new project for the example design. This will open the New Project Wizard

	In the Templates page, select Empty Application

[image: empty application select]

	In the new project, right-click on the src folder, and select Import… to start the file import Wizard

	In the Import wizard, select General > File Systems and click Next

[image: file system select]

	Browse to the src directory for the hello example design

	Select all of the source files and click Finish

[image: source file select]

	In the Project Settings window, click Add HW Function…*

	Select krnl_hello and click OK. This will add the accelerator function for the hello example to the project

[image: hardware function]

	Build and run the application

Configure a project with multiple kernels

Some example projects, such as getting_started/basic/vmul_vadd, need to be set up with more than one binary container.

As an example, the vmul_vadd project defines two kernels: krnl_vadd and krnl_vmul, which are expected to be found in krnl_vadd.xclbin and krnl_vmul.xclbin.

To set up the project to create these, follow these steps:

	In the Project Settings window, click Add Binary Container. This will create a new binary container.

	Click Add HW Function…

	Select krnl_vmul and click OK. This will add the accelerator function to the selected binary container.

	Change the name of the binary container to krnl_vmul. To change the name, click on the binary_container_1 name in the HW Functions table, and type the new name.

	Repeat these steps to add the krnl_vadd accelerator function to a binary container named krnl_vadd.

Configure command line arguments

Some applications use custom command line arguments, or do not need the .xlcbin file specified on the command line.

To change the command line arguments:

	In the Run menu, click Run Configurations….

	Check that the run configuration for the current project is selected. OpenCL > example-Default should be selected in the tree.

	Select the Arguments tab.

	If the .xclbin filenames are not needed on the command line, uncheck Automatically add binary container(s) to arguments.

	Type any custom command line arguments in the text box.

	Click Close to save changes, or Run to save changes and then run the application.

SDAccel Example Repository

Welcome to the SDAccel example repository. This repository contains the latest examples to get you started with application optimization targeting Xilinx PCIe FPGA acceleration boards. All examples are ready to be compiled and executed on boards hosted in the Nimbix and IBM SuperVessel clouds. The repository is organized as follows:

	GETTINGS STARTED

	ACCELERATION

	SECURITY

	VISION

	LIBS

	UTILITY

	OTHER INFORMATION

	SUPPORT

	REVISION HISTORY

1. GETTING STARTED

Collection of examples geared at teaching the user best practices in how to use different features of SDAccel and start on their own application.

2. ACCELERATION

Collection of examples in processor offloading to FPGA based compute units.

3. SECURITY

Collection of examples in encryption and data security.

4. VISION

Collection of examples in image and video processing.

5. LIBS

Collection of common libraries used across all examples to assist in the quick development of application host code.

6. UTILITY

Collection of utility functions used as part of the Makefiles in all of the examples. This set includes Makefile rules and scripts to launch SDAccel compiled applications onto boards hosted by Nimbix directly from the developers terminal shell.

7. OTHER INFORMATION

For more information check here:
SDAccel User Guides [http://www.xilinx.com/support/documentation-navigation/development-tools/software-development/sdaccel.html?resultsTablePreSelect=documenttype:SeeAll#documentation]

8. SUPPORT

For questions and to get help on this project or your own projects, visit the SDAccel Forums [https://forums.xilinx.com/t5/SDAccel/bd-p/SDx].

9. REVISION HISTORY

Date | Readme Version | Revision Description
——–|—————-|————————-
AUG2016 | 1.0 | Initial Xilinx release

K-Means

This README file contains the following sections:

	OVERVIEW

	HOW TO DOWLOAD THE REPOSITORY

	SOFTWARE TOOLS AND SYSTEM REQUIREMENTS

	DESIGN FILE HIERARCHY

	COMPILATION AND EXECUTION

	EXECUTION IN CLOUD ENVIRONMENTS

	SUPPORT

	LICENSE AND CONTRIBUTING TO THE REPOSITORY

	ACKNOWLEDGEMENTS

	REVISION HISTORY

1. OVERVIEW

This is OpenCL Based K-Means clustering Implementation for Xilinx FPGA
Devices. K-means clustering is a method of vector quantization, that
is popular for cluster analysis in data mining. K-means clustering
aims to partition n observations into k clusters in which each
observation belongs to the cluster with the nearest mean, serving as
a prototype of the cluster.

Note: This application is ported from Rodinia

(https://www.cs.virginia.edu/~skadron/wiki/rodinia/)

Usage

./kmeans -i input_file [-m max_nclusters] [-n min_nclusters] [-g global_size] [-c golden_file] [options]

 -i filename : file containing data to be clustered
 -m max_nclusters : maximum number of clusters allowed [default=5]
 -n min_nclusters : minimum number of clusters allowed [default=5]
 -g global_size : Specify global size [default=1]
 -c golden_file : Golden File for result comparison
 -b : input file is in binary format
 -o : output cluster center coordinates [default=off]

2. HOW TO DOWNLOAD THE REPOSITORY

To get a local copy of the SDAccel example repository, clone this repository to the local system with the following command:

git clone https://github.com/Xilinx/SDAccel_Examples examples

where examples is the name of the directory where the repository will be stored on the local system.This command needs to be executed only once to retrieve the latest version of all SDAccel examples. The only required software is a local installation of git.

3. SOFTWARE AND SYSTEM REQUIREMENTS

Board | Device Name | Software Version
——|————-|—————–
Alpha Data ADM-PCIE-7V3|xilinx:adm-pcie-7v3:1ddr|SDAccel 2016.4
Xilinx KU115|xilinx:xil-accel-rd-ku115:4ddr-xpr|SDAccel 2016.4
Alpha Data ADM-PCIE-KU3|xilinx:adm-pcie-ku3:2ddr-xpr|SDAccel 2016.4

NOTE: The board/device used for compilation can be changed by adding the DEVICES variable to the make command as shown below

make DEVICES=<device name>

where the DEVICES variable accepts either 1 device from the table above or a comma separated list of device names.

4. DESIGN FILE HIERARCHY

Application code is located in the src directory. Accelerator binary files will be compiled to the xclbin directory. The xclbin directory is required by the Makefile and its contents will be filled during compilation. A listing of all the files in this example is shown below

.gitignore
Makefile
README.md
data/100
data/100.gold_c5
description.json
src/cluster.c
src/fpga_kmeans.cpp
src/fpga_kmeans.h
src/host.cpp
src/kmeans.cl
src/kmeans.h
src/kmeans_clustering_cmodel.c
src/rmse.c

5. COMPILATION AND EXECUTION

Compiling for Application Emulation

As part of the capabilities available to an application developer, SDAccel includes environments to test the correctness of an application at both a software functional level and a hardware emulated level.
These modes, which are named sw_emu and hw_emu, allow the developer to profile and evaluate the performance of a design before compiling for board execution.
It is recommended that all applications are executed in at least the sw_emu mode before being compiled and executed on an FPGA board.

make TARGETS=<sw_emu|hw_emu> all

where

 sw_emu = software emulation
 hw_emu = hardware emulation

NOTE: The software emulation flow is a functional correctness check only. It does not estimate the performance of the application in hardware.
The hardware emulation flow is a cycle accurate simulation of the hardware generated for the application. As such, it is expected for this simulation to take a long time.
It is recommended that for this example the user skips running hardware emulation or modifies the example to work on a reduced data set.

Executing Emulated Application

Recommended Execution Flow for Example Applications in Emulation

The makefile for the application can directly executed the application with the following command:

make TARGETS=<sw_emu|hw_emu> check

where

 sw_emu = software emulation
 hw_emu = hardware emulation

If the application has not been previously compiled, the check makefile rule will compile and execute the application in the emulation mode selected by the user.

Alternative Execution Flow for Example Applications in Emulation

An emulated application can also be executed directly from the command line without using the check makefile rule as long as the user environment has been properly configured.
To manually configure the environment to run the application, set the following

export LD_LIBRARY_PATH=$XILINX_SDX/runtime/lib/x86_64/:$LD_LIBRARY_PATH
export XCL_EMULATION_MODE=<sw_emu|hw_emu>
emconfigutil --xdevice 'xilinx:xil-accel-rd-ku115:4ddr-xpr:3.3' --nd 1

Once the environment has been configured, the application can be executed by

./host_kmeans -i ./data/100 -c ./data/100.gold_c5 -m 5 -n 5 -g 2

This is the same command executed by the check makefile rule

Compiling for Application Execution in the FPGA Accelerator Card

The command to compile the application for execution on the FPGA acceleration board is

make all

The default target for the makefile is to compile for hardware. Therefore, setting the TARGETS option is not required.
NOTE: Compilation for application execution in hardware generates custom logic to implement the functionality of the kernels in an application.
It is typical for hardware compile times to range from 30 minutes to a couple of hours.

6. Execution in Cloud Environments

FPGA acceleration boards have been deployed to the cloud. For information on how to execute the example within a specific cloud, take a look at the following guides.

	AWS F1 Application Execution on Xilinx Virtex UltraScale Devices (Coming Soon)

	Nimbix Application Execution on Xilinx Kintex UltraScale Devices

	IBM SuperVessel Research Cloud on Xilinx Virtex Devices [http://bcove.me/6pp0o482]

7. SUPPORT

For more information about SDAccel check the SDAccel User Guides [http://www.xilinx.com/support/documentation-navigation/development-tools/software-development/sdaccel.html?resultsTablePreSelect=documenttype:SeeAll#documentation]

For questions and to get help on this project or your own projects, visit the SDAccel Forums [https://forums.xilinx.com/t5/SDAccel/bd-p/SDx].

To execute this example using the SDAccel GUI, follow the setup instructions in SDAccel GUI README

8. LICENSE AND CONTRIBUTING TO THE REPOSITORY

The source for this project is licensed under the 3-Clause BSD License

To contribute to this project, follow the guidelines in the Repository Contribution README

9. ACKNOWLEDGEMENTS

This example is written by developers at

	Northwestern University [https://www.cs.virginia.edu/~skadron/wiki/rodinia/index.php/Rodinia:Accelerating_Compute-Intensive_Applications_with_Accelerators]

	Xilinx [http://www.xilinx.com]

10. REVISION HISTORY

Date | README Version | Description
—–|—————-|————
FEB2017|1.0|Initial Xilinx Release

Nearest Neighbor Linear Search

This README file contains the following sections:

	OVERVIEW

	HOW TO DOWLOAD THE REPOSITORY

	SOFTWARE TOOLS AND SYSTEM REQUIREMENTS

	DESIGN FILE HIERARCHY

	COMPILATION AND EXECUTION

	EXECUTION IN CLOUD ENVIRONMENTS

	SUPPORT

	LICENSE AND CONTRIBUTING TO THE REPOSITORY

	ACKNOWLEDGEMENTS

	REVISION HISTORY

1. OVERVIEW

This is an optimized implementation of a nearest neighbor linear search algorithm targeting execution on a SDAccel supported FPGA acceleration card.

PERFORMANCE

Board|Measurements per Cycle|Gigameasurements / Second
—-|—–|—–
xilinx:adm-pcie-ku3:2ddr-xpr|256|37.5

2. HOW TO DOWNLOAD THE REPOSITORY

To get a local copy of the SDAccel example repository, clone this repository to the local system with the following command:

git clone https://github.com/Xilinx/SDAccel_Examples examples

where examples is the name of the directory where the repository will be stored on the local system.This command needs to be executed only once to retrieve the latest version of all SDAccel examples. The only required software is a local installation of git.

3. SOFTWARE AND SYSTEM REQUIREMENTS

Board | Device Name | Software Version
——|————-|—————–
Alpha Data ADM-PCIE-KU3|xilinx:adm-pcie-ku3:2ddr-xpr|SDAccel 2016.4

NOTE: The board/device used for compilation can be changed by adding the DEVICES variable to the make command as shown below

make DEVICES=<device name>

where the DEVICES variable accepts either 1 device from the table above or a comma separated list of device names.

4. DESIGN FILE HIERARCHY

Application code is located in the src directory. Accelerator binary files will be compiled to the xclbin directory. The xclbin directory is required by the Makefile and its contents will be filled during compilation. A listing of all the files in this example is shown below

.gitignore
Makefile
README.md
data/queries.txt
description.json
src/krnl_linear_search.cpp
src/linear_search.c
src/linear_search.h

5. COMPILATION AND EXECUTION

Compiling for Application Emulation

As part of the capabilities available to an application developer, SDAccel includes environments to test the correctness of an application at both a software functional level and a hardware emulated level.
These modes, which are named sw_emu and hw_emu, allow the developer to profile and evaluate the performance of a design before compiling for board execution.
It is recommended that all applications are executed in at least the sw_emu mode before being compiled and executed on an FPGA board.

make TARGETS=<sw_emu|hw_emu> all

where

 sw_emu = software emulation
 hw_emu = hardware emulation

NOTE: The software emulation flow is a functional correctness check only. It does not estimate the performance of the application in hardware.
The hardware emulation flow is a cycle accurate simulation of the hardware generated for the application. As such, it is expected for this simulation to take a long time.
It is recommended that for this example the user skips running hardware emulation or modifies the example to work on a reduced data set.

Executing Emulated Application

Recommended Execution Flow for Example Applications in Emulation

The makefile for the application can directly executed the application with the following command:

make TARGETS=<sw_emu|hw_emu> check

where

 sw_emu = software emulation
 hw_emu = hardware emulation

If the application has not been previously compiled, the check makefile rule will compile and execute the application in the emulation mode selected by the user.

Alternative Execution Flow for Example Applications in Emulation

An emulated application can also be executed directly from the command line without using the check makefile rule as long as the user environment has been properly configured.
To manually configure the environment to run the application, set the following

export LD_LIBRARY_PATH=$XILINX_SDX/runtime/lib/x86_64/:$LD_LIBRARY_PATH
export XCL_EMULATION_MODE=<sw_emu|hw_emu>
emconfigutil --xdevice 'xilinx:xil-accel-rd-ku115:4ddr-xpr:3.3' --nd 1

Once the environment has been configured, the application can be executed by

./nearest data/queries.txt data/queries.txt

This is the same command executed by the check makefile rule

Compiling for Application Execution in the FPGA Accelerator Card

The command to compile the application for execution on the FPGA acceleration board is

make all

The default target for the makefile is to compile for hardware. Therefore, setting the TARGETS option is not required.
NOTE: Compilation for application execution in hardware generates custom logic to implement the functionality of the kernels in an application.
It is typical for hardware compile times to range from 30 minutes to a couple of hours.

6. Execution in Cloud Environments

FPGA acceleration boards have been deployed to the cloud. For information on how to execute the example within a specific cloud, take a look at the following guides.

	AWS F1 Application Execution on Xilinx Virtex UltraScale Devices (Coming Soon)

	Nimbix Application Execution on Xilinx Kintex UltraScale Devices

	IBM SuperVessel Research Cloud on Xilinx Virtex Devices [http://bcove.me/6pp0o482]

7. SUPPORT

For more information about SDAccel check the SDAccel User Guides [http://www.xilinx.com/support/documentation-navigation/development-tools/software-development/sdaccel.html?resultsTablePreSelect=documenttype:SeeAll#documentation]

For questions and to get help on this project or your own projects, visit the SDAccel Forums [https://forums.xilinx.com/t5/SDAccel/bd-p/SDx].

To execute this example using the SDAccel GUI, follow the setup instructions in SDAccel GUI README

8. LICENSE AND CONTRIBUTING TO THE REPOSITORY

The source for this project is licensed under the 3-Clause BSD License

To contribute to this project, follow the guidelines in the Repository Contribution README

9. ACKNOWLEDGEMENTS

This example is written by developers at

	Xilinx [http://www.xilinx.com]

10. REVISION HISTORY

Date | README Version | Description
—–|—————-|————
FEB2016|1.0|Initial Xilinx Release
JUL2016|2.0|Conversion to Makefile based compilation
DEC2016|3.0|Update for SDAccel 2016.3

pseudo random number generator

This README file contains the following sections:

	OVERVIEW

	HOW TO DOWLOAD THE REPOSITORY

	SOFTWARE TOOLS AND SYSTEM REQUIREMENTS

	DESIGN FILE HIERARCHY

	COMPILATION AND EXECUTION

	EXECUTION IN CLOUD ENVIRONMENTS

	SUPPORT

	LICENSE AND CONTRIBUTING TO THE REPOSITORY

	ACKNOWLEDGEMENTS

	REVISION HISTORY

1. OVERVIEW

This is an optimized implementation of the pseudo random number generator algorithm
The method used to generate a random number sequence is called complementary multiply with carry (CMWC)
targeting exection on an SDAccel support FPGA acceleration card

PERFORMANCE

Board|Total Number of Samples|Kernel Duration
—-|—–|—–
xilinx:adm-pcie-ku3:2ddr-xpr|16777216|59.1ms

2. HOW TO DOWNLOAD THE REPOSITORY

To get a local copy of the SDAccel example repository, clone this repository to the local system with the following command:

git clone https://github.com/Xilinx/SDAccel_Examples examples

where examples is the name of the directory where the repository will be stored on the local system.This command needs to be executed only once to retrieve the latest version of all SDAccel examples. The only required software is a local installation of git.

3. SOFTWARE AND SYSTEM REQUIREMENTS

Board | Device Name | Software Version
——|————-|—————–
Alpha Data ADM-PCIE-7V3|xilinx:adm-pcie-7v3:1ddr|SDAccel 2016.4
Xilinx KU115|xilinx:xil-accel-rd-ku115:4ddr-xpr|SDAccel 2016.4
Alpha Data ADM-PCIE-KU3|xilinx:adm-pcie-ku3:2ddr-xpr|SDAccel 2016.4

NOTE: The board/device used for compilation can be changed by adding the DEVICES variable to the make command as shown below

make DEVICES=<device name>

where the DEVICES variable accepts either 1 device from the table above or a comma separated list of device names.

4. DESIGN FILE HIERARCHY

Application code is located in the src directory. Accelerator binary files will be compiled to the xclbin directory. The xclbin directory is required by the Makefile and its contents will be filled during compilation. A listing of all the files in this example is shown below

.gitignore
Makefile
README.md
description.json
src/dma.cpp
src/dma.h
src/prng.cpp
src/prng.h

5. COMPILATION AND EXECUTION

Compiling for Application Emulation

As part of the capabilities available to an application developer, SDAccel includes environments to test the correctness of an application at both a software functional level and a hardware emulated level.
These modes, which are named sw_emu and hw_emu, allow the developer to profile and evaluate the performance of a design before compiling for board execution.
It is recommended that all applications are executed in at least the sw_emu mode before being compiled and executed on an FPGA board.

make TARGETS=<sw_emu|hw_emu> all

where

 sw_emu = software emulation
 hw_emu = hardware emulation

NOTE: The software emulation flow is a functional correctness check only. It does not estimate the performance of the application in hardware.
The hardware emulation flow is a cycle accurate simulation of the hardware generated for the application. As such, it is expected for this simulation to take a long time.
It is recommended that for this example the user skips running hardware emulation or modifies the example to work on a reduced data set.

Executing Emulated Application

Recommended Execution Flow for Example Applications in Emulation

The makefile for the application can directly executed the application with the following command:

make TARGETS=<sw_emu|hw_emu> check

where

 sw_emu = software emulation
 hw_emu = hardware emulation

If the application has not been previously compiled, the check makefile rule will compile and execute the application in the emulation mode selected by the user.

Alternative Execution Flow for Example Applications in Emulation

An emulated application can also be executed directly from the command line without using the check makefile rule as long as the user environment has been properly configured.
To manually configure the environment to run the application, set the following

export LD_LIBRARY_PATH=$XILINX_SDX/runtime/lib/x86_64/:$LD_LIBRARY_PATH
export XCL_EMULATION_MODE=<sw_emu|hw_emu>
emconfigutil --xdevice 'xilinx:xil-accel-rd-ku115:4ddr-xpr:3.3' --nd 1

Once the environment has been configured, the application can be executed by

./prng

This is the same command executed by the check makefile rule

Compiling for Application Execution in the FPGA Accelerator Card

The command to compile the application for execution on the FPGA acceleration board is

make all

The default target for the makefile is to compile for hardware. Therefore, setting the TARGETS option is not required.
NOTE: Compilation for application execution in hardware generates custom logic to implement the functionality of the kernels in an application.
It is typical for hardware compile times to range from 30 minutes to a couple of hours.

6. Execution in Cloud Environments

FPGA acceleration boards have been deployed to the cloud. For information on how to execute the example within a specific cloud, take a look at the following guides.

	AWS F1 Application Execution on Xilinx Virtex UltraScale Devices (Coming Soon)

	Nimbix Application Execution on Xilinx Kintex UltraScale Devices

	IBM SuperVessel Research Cloud on Xilinx Virtex Devices [http://bcove.me/6pp0o482]

7. SUPPORT

For more information about SDAccel check the SDAccel User Guides [http://www.xilinx.com/support/documentation-navigation/development-tools/software-development/sdaccel.html?resultsTablePreSelect=documenttype:SeeAll#documentation]

For questions and to get help on this project or your own projects, visit the SDAccel Forums [https://forums.xilinx.com/t5/SDAccel/bd-p/SDx].

To execute this example using the SDAccel GUI, follow the setup instructions in SDAccel GUI README

8. LICENSE AND CONTRIBUTING TO THE REPOSITORY

The source for this project is licensed under the 3-Clause BSD License

To contribute to this project, follow the guidelines in the Repository Contribution README

9. ACKNOWLEDGEMENTS

This example is written by developers at

	Xilinx [http://www.xilinx.com]

10. REVISION HISTORY

Date | README Version | Description
—–|—————-|————
FEB2017|1.0|Initial Xilinx Release

Smithwaterman Genetic Sequencing Demo

This README file contains the following sections:

	OVERVIEW

	HOW TO DOWLOAD THE REPOSITORY

	SOFTWARE TOOLS AND SYSTEM REQUIREMENTS

	DESIGN FILE HIERARCHY

	COMPILATION AND EXECUTION

	EXECUTION IN CLOUD ENVIRONMENTS

	SUPPORT

	LICENSE AND CONTRIBUTING TO THE REPOSITORY

	ACKNOWLEDGEMENTS

	REVISION HISTORY

1. OVERVIEW

This is an optimized implementation of the smithwaterman algorithm targeting exection on an SDAccel support FPGA acceleration card.

The main algorithm characteristics of this application are

	Compute MaxScore

	Systolic array implementation

2. HOW TO DOWNLOAD THE REPOSITORY

To get a local copy of the SDAccel example repository, clone this repository to the local system with the following command:

git clone https://github.com/Xilinx/SDAccel_Examples examples

where examples is the name of the directory where the repository will be stored on the local system.This command needs to be executed only once to retrieve the latest version of all SDAccel examples. The only required software is a local installation of git.

3. SOFTWARE AND SYSTEM REQUIREMENTS

Board | Device Name | Software Version
——|————-|—————–
Alpha Data ADM-PCIE-7V3|xilinx:adm-pcie-7v3:1ddr|SDAccel 2016.4
Xilinx KU115|xilinx:xil-accel-rd-ku115:4ddr-xpr|SDAccel 2016.4

NOTE: The board/device used for compilation can be changed by adding the DEVICES variable to the make command as shown below

make DEVICES=<device name>

where the DEVICES variable accepts either 1 device from the table above or a comma separated list of device names.

4. DESIGN FILE HIERARCHY

Application code is located in the src directory. Accelerator binary files will be compiled to the xclbin directory. The xclbin directory is required by the Makefile and its contents will be filled during compilation. A listing of all the files in this example is shown below

.gitignore
Makefile
README.md
description.json
src/genseq.cpp
src/intel/kseq.h
src/intel/sc_demo.c
src/intel/ssw.c
src/intel/ssw.h
src/main.cpp
src/matcharray.cpp
src/matcharray.h
src/opencl_sw_maxscore_basic.cpp
src/opencl_sw_maxscore_systolic.cpp
src/smithwaterman.cpp
src/smithwaterman.h
src/sw.h

5. COMPILATION AND EXECUTION

Compiling for Application Emulation

As part of the capabilities available to an application developer, SDAccel includes environments to test the correctness of an application at both a software functional level and a hardware emulated level.
These modes, which are named sw_emu and hw_emu, allow the developer to profile and evaluate the performance of a design before compiling for board execution.
It is recommended that all applications are executed in at least the sw_emu mode before being compiled and executed on an FPGA board.

make TARGETS=<sw_emu|hw_emu> all

where

 sw_emu = software emulation
 hw_emu = hardware emulation

NOTE: The software emulation flow is a functional correctness check only. It does not estimate the performance of the application in hardware.
The hardware emulation flow is a cycle accurate simulation of the hardware generated for the application. As such, it is expected for this simulation to take a long time.
It is recommended that for this example the user skips running hardware emulation or modifies the example to work on a reduced data set.

Executing Emulated Application

Recommended Execution Flow for Example Applications in Emulation

The makefile for the application can directly executed the application with the following command:

make TARGETS=<sw_emu|hw_emu> check

where

 sw_emu = software emulation
 hw_emu = hardware emulation

If the application has not been previously compiled, the check makefile rule will compile and execute the application in the emulation mode selected by the user.

Alternative Execution Flow for Example Applications in Emulation

An emulated application can also be executed directly from the command line without using the check makefile rule as long as the user environment has been properly configured.
To manually configure the environment to run the application, set the following

export LD_LIBRARY_PATH=$XILINX_SDX/runtime/lib/x86_64/:$LD_LIBRARY_PATH
export XCL_EMULATION_MODE=true
emconfigutil --xdevice 'xilinx:xil-accel-rd-ku115:4ddr-xpr:3.3' --nd 1

Once the environment has been configured, the application can be executed by

./smithwaterman

This is the same command executed by the check makefile rule

Compiling for Application Execution in the FPGA Accelerator Card

The command to compile the application for execution on the FPGA acceleration board is

make all

The default target for the makefile is to compile for hardware. Therefore, setting the TARGETS option is not required.
NOTE: Compilation for application execution in hardware generates custom logic to implement the functionality of the kernels in an application.
It is typical for hardware compile times to range from 30 minutes to a couple of hours.

6. Execution in Cloud Environments

FPGA acceleration boards have been deployed to the cloud. For information on how to execute the example within a specific cloud, take a look at the following guides.

	AWS F1 Application Execution on Xilinx Virtex UltraScale Devices (Coming Soon)

	Nimbix Application Execution on Xilinx Kintex UltraScale Devices

	IBM SuperVessel Research Cloud on Xilinx Virtex Devices [http://bcove.me/6pp0o482]

7. SUPPORT

For more information about SDAccel check the SDAccel User Guides [http://www.xilinx.com/support/documentation-navigation/development-tools/software-development/sdaccel.html?resultsTablePreSelect=documenttype:SeeAll#documentation]

For questions and to get help on this project or your own projects, visit the SDAccel Forums [https://forums.xilinx.com/t5/SDAccel/bd-p/SDx].

To execute this example using the SDAccel GUI, follow the setup instructions in SDAccel GUI README

8. LICENSE AND CONTRIBUTING TO THE REPOSITORY

The source for this project is licensed under the 3-Clause BSD License

To contribute to this project, follow the guidelines in the Repository Contribution README

9. ACKNOWLEDGEMENTS

This example is written by developers at

	Xilinx [http://www.xilinx.com]

10. REVISION HISTORY

Date | README Version | Description
—–|—————-|————
FEB2016|1.0|Initial Xilinx Release
OCT2016|2.0|Conversion to Makefile based compilation
DEC2016|3.0|Update for SDAccel 2016.3

Getting Started Examples

This page contains examples for users who are new to Xilinx SDx OpenCL Flows. The focus of the examples is towards code optimization for Xilinx devices.The table lists various categories of examples in suggested order which users can follow.

Prerequisites

	User is familiar with basics of OpenCL flow.

	User has gone through SDx tutorial and is familiar with basics of tool functionality and terminology.

S.No. | Category | Description
——–|———–|—————————————–
1 | host |OpenCL host code for optimized interfacing with Xilinx Devices
2 | kernel_to_gmem |Kernel to Global Memory Access Optimization.
3 | kernel_opt |Kernel Optimization for performance
4 | dataflow |Kernel Optimization through Macro Level Pipelining
5 | clk_freq |Improving Kernel Clock Frequency through Optimized code.
6 | debug |Debugging and Profiling of Kernel.
7 | rtl_kernel |RTL Kernel Based Examples
8 | basic |OpenCL miscellaneous Examples

Examples Table

Example | Description | Key Concepts / Keywords
—————|———————–|————————-
host/concurrent_kernel_execution_ocl/|This example will demonstrate how to use multiple and out of order command queues to simultaneously execute multiple kernels on an FPGA.|Key Concepts - Concurrent execution - Out of Order Command Queues - Multiple Command QueuesKeywords - CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE - clSetEventCallback()
host/data_transfer_ocl/|This example illustrates several ways to use the OpenCL API to transfer data to and from the FPGA|Key Concepts - OpenCL API - Data Transfer - Write Buffers - Read Buffers - Map Buffers - Async MemcpyKeywords - clEnqueueWriteBuffer() - clEnqueueReadBuffer() - clEnqueueMapBuffer() - clEnqueueUnmapMemObject()
host/device_query_ocl/|This example prints the OpenCL properties of the platform and its devices. It also displays the limits and capabilities of the hardware.|Key Concepts - OpenCL API - Querying device propertiesKeywords - clGetPlatformIDs() - clGetPlatformInfo() - clGetDeviceIDs() - clGetDeviceInfo()
host/errors_ocl/|This example discuss the different reasons for errors in OpenCL and how to handle them at runtime.|Key Concepts - OpenCL API - Error handlingKeywords - CL_SUCCESS - CL_DEVICE_NOT_FOUND - CL_DEVICE_NOT_AVAILABLE
host/helloworld_ocl/|This example is a simple OpenCL application. It will highlight the basic flow of an OpenCL application.|Key Concepts - OpenCL APIKeywords - NA
host/multiple_devices_ocl/|This example show how to take advantage of multiple FPGAs on a system. It will show how to initialized an OpenCL context, allocate memory on the two devices and execute a kernel on each FPGA.|Key Concepts - OpenCL API - Multi-FPGA Execution - Event HandlingKeywords - cl_device_id - clGetDeviceIDs()
host/overlap_ocl/|This examples demonstrates techniques that allow user to overlap Host(CPU) and FPGA computation in an application. It will cover asynchronous operations and event object.|Key Concepts - OpenCL API - Synchronize Host and FPGA - Asynchronous Processing - Events - Asynchronous memcpyKeywords - cl_event - clCreateCommandQueue - CL_QUEUE_OUT_OF_ORDER_EXEC_MODE_ENABLE - clEnqueueMigrateMemObjects
kernel_to_gmem/burst_rw_c/|This is simple example of using AXI4-master interface for burst read and write|Key Concepts - burst accessKeywords -